
-;_-_I

1_87- 24897

I

l
I

I

l
i

I
I
I

I
I

I
I

i
I
i

TECHNICAL SUMMARY

1982

REPORT TO THE NATIONAL AERONAUTICS

AND SPACE ADMINISTRATION

Grant 01-526104

Department of Computer Science

University of Maryland

College Park, MD 20742

Principal Investigator:

Dr. Victor Basill

2-9

Overview

During 1982, in conjunction with NASA/GSFC Software Engineering

Laboratory (SEL), research was conducted in 4 areas: Software Develop-

ment Predictors, Error Analysis, Reliability Models and Software Metric

Analysis. Summaries of the projects follow below.

_. Software Development Predictors

A study is being done on the use of dynamic characteristics as

predictors for software development. It is hoped that by examining a

set of readily available characteristics, the project manager may be

able to determine such things as when a project is in trouble and evalu-

ate the quality of the product as it is being designed.

Project DEB was selected as the control for the project since it

was considered fairly successful and is well documented. Information

found in the history files and resource summary files was initially

utilized. These files were chosen because the information they contain

is readily accessible to the managey (ie. number of lines of code, man-

power, computer time) etc.). Several profiles of project DEB were then

made using this information, Project DEA's profiles were then compared

with these results. This project was chosen because it was very similar

to DEB but was considered less successful.

The history file was first examined to see if any growth pattern

existed for the lines of code. The initial look at DEA and DEB looked

hopeful but further investigation of other projects showed no discerni-

ble pattern. Other examinations of this file yielded similar results.

2-10

i
l
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

l

I
I
I

i
I

I
l

l
I
l

I

I

I
I

I
I

l

When a comparison of the information in the history and resource

summary files was made some differences did appear. Initial plots used

accumulative totals versus different time factors. These plots did

demonstrate visible differences between the two projects. Further

investigation using weekly totals instead of accumulative totals showed

an even larger difference between the projects.

Project DEA had a higher frequency of changes at the beginning

of the project, while at the same time, the number of hours of manpower

reported for the interval was less. The number of computer runs made

was higher for DEB in the part of the project where DEA was experiencing

the higher number of changes per manpower. In all, project DEA appears

to have had less effort placed during the early phase of the project

which may of led to the problems in the end. Another important aspect

of project DEA was that several thousand lines of code appear to have

been transported. Adaptation of this code may explain the high number

of changes initially seen in DEA.

From this examination the following general goals and

hypothesis have been generated:

A) The manpower usage in the SEL environment is a discernible pattern

and may be used as a predictor.

I) The ideal staffing for a successful project is a two hump curve

with the second hump beginning roughly 2/3 into the project.

2) The two humps mentioned in hypothesis I should peak at approxi-

mately the same height.

3) The maximum peak height of the first hump is proportional to the

final size of the project. This also hold for the second hump based

on hypothesis two.

4) The location of the two peaks is constant with relation to the

amount of manpower utilized.

5) The amount of manpower expended between the two peaks is con-

stant.

2-11

I

6) Projects deemed less successful by subjective analysis have

sharp changes in the amount of manpower spent per change.

B) The pattern of changes in relation to manpower, computer runs, lines

of code, etc. may be used as a predictor in the SEL environment.

1) The amount of manpower to make a change should increase toward

the end of a project and be stable at the beginning.

2) The manpower per change should be lower in the beginning of the

project. See also goal D.

3) Projects deemed less successful by subjective analysis have

sharp changes in the amount of manpower spent per change.

4) The ratio of changes to computer run should decrease as the pro-

Ject evolves.

5) The amount of computer time spent on detecting and correcting a

given change will remain constant.

C) The number of computer runs is closely related to the development of

a project and may be used to Judge project development.

I) The number of computer runs remains constant during the initial

hump of the staffing curve. The number of computer runs will drop

during the second hump of the staffing curve.

2) The ratio of changes to computer runs should decrease as the

project evolves.

D) A close examination of the types of changes and the pattern they make

over time should be a good indication of the success of a given project.

I) Time consuming changes that occur late in the project more often

appear in modified code.

2) Unit testing is not as extensive on modules with modified code.

Undetected errors may cause major problems latter in development.

3) The types of changes vary across the development of a project.

4) The number of changes per hour of manpower is related to the

type of changes being done.

5) The types of change that require more time to correct occur dur-

ing the second staffing hump.

Several projects will now examined to test the validity of these

finds. The change report forms will also be examined to see if the

information in them yields any useful predictors.

To conclude, the study has completed its initial analysis of the

two projects. It appears there are some significant factors that could

be useful as predictors. Further analysis may yield some information

2-12

!

I

i
i

I
g
I

I
I

i
!

i
I

i

I
I

I
g
I

II

i

I

II

II

i

I

II

I

II

II

I

i

I

i

II

I

II

I

that would be useful to a project manager.

2. Error Analysis

A). Publication of existing results -- Three papers are being prepared

from earlier work on error analysis conducted by the SEL laboratory.

One is on the data collection methodology and the validation of the

accuracy of the data, the second one is on the analysis of the SEL pro-

Jects directly and the third one is a comparison of the SEL projects

with projects of the Naval Research Laboratory. These papers are

currently being submitted for publication and will be published as

University of Maryland Technical Reports in the interim.

B). A study on software errors and complexity -- The distribution and

relationships derived from the change data collected during the develop-

ment of the medium scale satellite project shows that meaningful results

can be obtained which allow insight into software traits and the

environment in which it is developed. The project studied in this case

was GMAS. Modified and new modules were shown to behave similarly. An
d-

abstract classification scheme for errors which allows a better under-

standing of the overall traits, of a software project was also provided.

Finally, various size and complexity metrics are examined with respect

to errors detected within the software yielding some interesting

results. A University of Maryland Technical Report describing these

results was published [Bas82]. This paper has been submitted for publi-

cation.

C). A further examination of the error characteristics of the DE_A and

DE B projects is currently being undertaken. This error anaiys[s is

2-13

being conducted using the techniques developed and documented in [Wei81]

and [Per82]. The focal point of this research effort is to characterize

errors in the NASA/GSFC software development environment.

A preliminary review of a sample of the Change ReportForms from

both DE A and DE B has been conducted. The sample included only those

CRF°s for which an error change was reported. The purpose of this

review was to "get a flavor" for the data collected and to preliminarily

assess the consistency of that data with the results found to date by

SEL personnel.

The sample included 98 CRF's from DE A and 90 CRF's from DE B. Of

the 98 CRF's from DE A, 63 (64.3%) of the errors were classified as an

"error in the design or implementation of a single component." Of the

90 CRF's from DE B, 16 errors were reported as "clerical errors." Of the

remaining 74 DE B errors (non-clerical errors), 61 (84.2%) of the errors

were also classified as "errors in the design or implementation of a

single component."

Although the percentage classi_fied as "errors in a single com-

ponent" for DE B was higher than the other studies, these preliminary

results appear to follow the results of previous analyses [Wei81]. As i_

that previous work, the distribution of errors in other categories does

not neatly fit a pattern. In fact, there are too few events in the

other categories to draw any initial conclusions. It will be interest-

ing to explore the reason(s) DE B experienced a substantially larger

number of "clerical errors."

There are marked differences in the remaining DE A and DE B error

reports. This may be attributable to the reported differences in the

2-14

I

I

l
I

I

I

I
I

I

I

I

I
I

i
l
l

I
I

I
I
l

I

I
I

I

I
I

I

two projects. It is not possible at this time to conjecture on more

tangible causes for the differences. The full set of error change

reports will have to be examined, for both projects.

It is worth noting here that for DE A, 31 of 98 error reports

(31.8%) examined were classified as being an "error in the design or

implementation of more than one component." Based on previous results

cited above, this is an unusually high percentage. Only 4 components

(4.1%) had errors reported that were not in the design or implementation

of component(s) categories.

As part of the preliminary work toward the above goal, the related

literature released by SEL was reviewed. A conclusion reached was that

the definitions of several critical terms were not necessarily con-

_istent, and often times the technical reports make too great an assump-

tion about the uniformity of use of software engineering terms.

"Interface" provides a good example of an ill-defined yet oft used

term. Using the definition from [Wei81] (the same definition is used in

[Bas8Ob] and [Gio79]) it is arguable that interface errors can be cap-

tured five ways from the CRF:

-an error involving more than one component;

-an error involving a common routine;

-from textual comments in the CRF (eg: a CRF for which the error

was entered as having affected one component but the text indicated

that the error was in a subroutine call statement);

-an error reported as having been located in one component but the

change required to repair the error affected more than one com-

ponent; and

-a change that caused an error because either the change invali-

dated an assumption made elsewhere in the software or an assumption

made about the rest of the software in the design of the change was

incorrect (contingent on ability to capture supporting text and

ability to distinguish from erroneous assumptions made about a sin-

gle component).

2-15

I

An effort is currently underway to develop a more restrictive set

of definitions for software engineering terms, specifically those that

apply to error analysis. The basis of this effort is the set of defini-

tions published in [Bas80] and [Gio79] and will be modified, as neces-

sary, in consultation with those persons associated with SEL in the past

and present, whose work is or was related to the error analysis effort.

_. Reliability Models

A study is being performed in the area of reliability models. This

research includes the field of program testing because the validity of

some reliability models depends on the answers to some unanswered ques-

tions about testing.

• The eventual goal of this research is to understand how and when to

use reliability models. We are investigating the use of functional

testing because some reliability models make assumptions about the way

program testing is accomplished [Musa]. It is not known if functional

testing satisfies the random testing assumptions made by the reliability

models. The validity of reliability models that use data generated by

functional testing is uncertaih until this question is answered.

We are using structural coverage metrics to gain further insight

into the effects of functional testing. A structural coverage metric is

a measure of how much of a program was executed for given input data.

Studying the coverage metric may allow us to develop other measures of

reliability.

An additional bonus of this research is that it allows us to com-

pare functional testing and structural testing. It is not known how

2-16

I
I

I
I

i
I

l
I
I

I
I

I

I
I

I
I

I
I

I

I

I

l

I

i

I

I

I

I

I

I

I

I

I

I

I

I

these two methods of testing are related• The results of this investi-

gation may answer that question.

Since January background material has been studied with regard to

reliability models, and functional and structural testing [Mueller]. A

FORTRAN preprocessor has been written to calculate the structural cover-

age metrics of GSFC FORTRAN source code.

The preprocessor calculates the simplest metric, the percent of

executable code that is executed• There are several ways to measure

coverage [Auerbach]. One method uses interpretation of the source code.

The interpreter records which statements are executed• At the end of

interpretation, it writes a list of executed statements.

The second method uses "switches", small sections of code that are

inserted into the source program text wherever the flow of control

diverges or converges. The switch has 2 values: 0 if it was not exe-

cuted, I if it was executed• The value of the switches is output after

execution•

An example:

INTEGER SWITCH (N)

FOR I = I, N

SWITCH (I) = 0

READ (J);

IF (even (J))

THEN

SWITCH (I) : I;

ELSE

SWITCH (2) = I;

2-17

I

ENDIF

FOR I = I, N

WRITE (SWITCH (I));

END

When this program is executed, one of the two branches of the if

statement will be executed. By examining the values of the array

SWITCH, we can determine what code was executed. By analyzing the code

and counting statements, the number of statements executed can be deter-

mined• In practice, the amount of data generated will be large•

Software tools are needed to help analyze the data.

The switches can be inserted by a preprocessor (before compilation)

or by a compiler (during compilation). The switches may be in-line code

(as in the example) or a call to a switch subroutine that records the

flow of control.

This latter approach was taken and a preprocessor was developed

that runs on VAX/Unix at UMCP. The preprocessor takes a copy of the

input source code, and modifies it. This modified copy will be returned

to the source computer (at GSFC) where it will be compiled and executed.

The execution produces the desired coverage data. The coverage data

will be returned to the University for analysis.

Many things remain to be done before we reach our goal of under-

standing how and when to use reliability models. The immediate goal is

to try to answer the functional testing / reliability model question.

The project RADMAS has been chosen as an experimental system [CSC]. The

preprocessor must be used to modify the RADMAS source code. (The RADMAS

2-18

I
I

I
I

I
I

1

I
I

I

I
I

I
I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

I

project and its functionally-generated acceptance tests have been made

available for the coverage experiment.) The modified RADMAS code must be

executed at GSFC using the functionally-generated acceptance tests.

This experiment should answer these questions about functional

testing and reliability models:

-What is the percent coverage of functional testing?

-Does functional testing meet the randomness requirements

of the MTTF models? If not, can it be made to?

-Do the structural metrics show any useful patterns in

the way that functional testing tests programs? How

does the coverage set grow? At what rate does the coverage set

grow?

-How independent are individual tests from a coverage

point of view?

The results of this experiment will raise further questions about

functional testing and reliability models. This will require more exper-

imentation. If these questions are answered, there is more work to do

concerning how and when to use reliability models.

4. Software Metrics.

The attraction of the ability to predict the effort in developing

or explain the quality of software has led to the proposal of several

theories and metrics [Hal77, McC76, Gaf, Che78, Cur79]. In the Software

Engineering Laboratory, the Halstead metrics, McCabe's cyclomatic com-

plexity and various standard metrics have been analyzed for their rela-

tion to effort, development errors and one another [Bas82a]. This study

examined data collected from seven SEL (FORTRAN) projects and applied

three effort reporting accuracy checks to demonstrate the need to vali-

date a database.

2-19

The investigation examined the correlations of the various metrics

with effort (functional specifications through acceptance testing) and

development errors (both discrete and weighted according to amount of

time to locate and fix) across several projects at once, within indivi-

dual projects and for individual programmers across projects.

In order to remove the dependency of the distribution of the corre-

lation coefficients on the actual measures of effort and errors, the

non-parametric Spearman rank-order correlation coefficients were exam-

ined [Ken79]. The metrics" correlations with actual effort seem to be

strongest when modules developed entirely by individual programmers or

taken from certain validated projects are considered. When examining

modules developed totally by individual programmers, two averages formed

from the proposed validity ratios induce a statistically significant

ordering of the magnitude of several of the metrics" correlations. The

systematic application of one of the data reliability checks (the fre-

quency of effort reporting) substantially improves either all or several

of the projects" effort correlations with the metrics. In addition to

these relationships, the Halst%ad metrics seem to possess reasonable

correspondence with their estimators, although some of them have size

dependent properties. In comparing the strongest correlations, neither

Halstead's E metric, McCabes" cyclomatic complexity nor source lines of

code relates convincingly better with effort than the others.

The metrics examined in this study were calculated from primitive

measures derived from a source analyzing program (SAP -- Revision I)

[Dec82]. An earlier version of this static analyzer implemented a less

comprehensive definition of Halstead operators and operands[O'Ne78].

2-20

I

I
I

I

I
I
I
I

I

I
I
I

I

I
I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Some work has been done comparing the metrics" correlations when they

have been determined from the different interpretations of the primitive

measures.

This investigation has been submitted for publication to the Tran-

sactions on Software Engineering and will appear as a University of

Maryland Technlcal Report.

2-21

5. References

[Auerbach] Auerbach Publishers Inc., "Practical Measures for Program

Testing Thoroughness", 1977.

[BasS0] V. Basili, Tutorial on Models and Metrics for Software Manage-

ment and Engineering, p. 340, IEEE 1980

[Bas82a] V. Basili, R. Seiby and T. Phillips, "Data Validation in a

Software Metric Analysis of FORTRAN Modules," -- to appear

IEEE Transactions on Software Engineering, July 1982.

[Bas82b] V. Basili and B. Perricone, "Software Errors and Complexity:

An Empirical Investigation," The Software Engineering

Laboratory, University of Maryland Technical Report TR-1195,

August 1982

[Bas82c] V. Basili, "An Assessment of Software Measures in the Software

Engineering Laboratory," presented at Goddard Space Flight

Center, January 1982.

[Card82] Card, D., F.McGarry and J. Page, "Evaluation of Management

Measures of Software Development," Vol I & II, Software

Engineering Laboratory Series, SEL - 82 - 001, Goddard Space

" Flight Center, September 1982.

[Chen 78] E. T. Chen, "Program Complexity and Programmer Productivity,"

IEEE Transactions on Software En_ineerins, Vol. SE-4, No. 3,

pp---_187-194 (May 1978).

[CSC] Computer Sciences Corporation, RADMAS User's Guide., September

1981.

[Curtis et al 79] Curtis, Sheppard and Milliman, "Third Time Charm:

Stronger Prediction of Programmer Performance by Software

ComPlexity Metrics," Proceedings of the Fourth International

on Software En_ineerins, pp. 356-360 (1979).

[Decker & Taylor 82] W. J Decker and W. A. Taylor, "FORTRAN Static

Source Code Analyzer Program (SAP) User's Guide (Revision

I)," SEL-78-I02, Software Engineering Laboratory, (May

1982).

[Oaffney & Heller] J. Gaffney and O. L. Heller, "Macro Variable

Software Models for Application to Improved Software

Development Management," Proceedinss of Workshop on Quanti-

tative Software Models for Reliability, Complexitz and Cost,

IEEE Computer Society.

[Gio79] S. Gloss-Soler, The DACS Glossary -- A Bibliography of Software

En_ineerin_ Terms, Data and Analysis Center for Software, p.
56, October 1979

[Halstead 77] M. Halstead, Elements of Software Science, Elsevier North-

Holland, New York (1977).

[Kendall & Stuart 79] M. Kendall and A. Stuart, The Advanced Theory of

Statistics, Vol. 2, Fourth Ed., MacMillian, New York, 1979,

pp. 503-508.

2-22

I

I

I
I
I

I
!
I

I
I

I
I

I

I
I

I

I
I

!

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

[McCabe 76] T. J. McCabe, "A Complexity Measure," IEEE Transactions on

Software Engineering, Vol. SE-2, pp. 308-320 (December
1976).

[Mueller] Muellerp Barbara, "Test Data Selection: A Comparison of Struc-

tural and Functional Testing", April 1980, private paper.

[Musa] Musa, John, D., "Software Reliability Management", Software Life

Cycle Management Workshop, August 1977.

[O'Neill et al 78] E. M: O'Neill, S. R. Waligora and C. E. Goorevich,

"FORTRAN Static Source Code Analyzer (SAP) User's Guide,"

SEL-78-002, Software Engineering Laboratory (February 1978).

[Pic82] G Picasso, "The Rayleigh Curve as a Model for Effort Distribu-

tion Over the Life of Medium Scale Software Systems,"

Department of Computer Science, University of Maryland

Technical Report TR-1186, July 1982.

[Wei81] D. Weiss, "Evaluating Software Development by Analysis of

Change Data," The Software Engineering Laboratory, Univer-

sity of Maryland Technical Report TR-1120, November 1981

2-23

